Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(2): 223-237, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37715003

RESUMO

Due to the sustained proliferative potential of cancer cells, inducing cell death is a potential strategy for cancer therapy. Paraptosis is a mode of cell death characterized by endoplasmic reticulum (ER) and/or mitochondrial swelling and cytoplasmic vacuolization, which is less investigated. Considerable evidence shows that paraptosis can be triggered by various chemical compounds, particularly in cancer cells, thus highlighting the potential application of this non-classical mode of cell death in cancer therapy. Despite these findings, there remain significant gaps in our understanding of the role of paraptosis in cancer. In this review, we summarize the current knowledge on chemical compound-induced paraptosis. The ER and mitochondria are the two major responding organelles in chemical compound-induced paraptosis, which can be triggered by the reduction of protein degradation, disruption of sulfhydryl homeostasis, overload of mitochondrial Ca2+, and increased generation of reactive oxygen species. We also discuss the stumbling blocks to the development of this field and the direction for further research. The rational use of paraptosis might help us develop a new paradigm for cancer therapy.


Assuntos
Neoplasias , Linhagem Celular Tumoral , Morte Celular , Espécies Reativas de Oxigênio/metabolismo , Retículo Endoplasmático/metabolismo , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
2.
Pharmacol Res ; 198: 106988, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984507

RESUMO

Profiting from the sustained clinical improvement and prolonged patient survival, immune checkpoint blockade of programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has emerged as a revolutionary cancer therapy approach. However, the anti-PD-1/PD-L1 antibodies only achieve a clinical response rate of approximately 20%. Herein, we identified a novel combination strategy that Chinese medicine ginseng-derived ginsenoside Rh2 (Rh2) markedly improved the anti-cancer efficacy of anti-PD-L1 antibody in mice bearing MC38 tumor. Rh2 combined with anti-PD-L1 antibody (combo treatment) further triggered the infiltration, proliferation and activation of CD8+ T cells in the tumor microenvironment (TME). Depletion of CD8+ T cells by mouse CD8 blocking antibody abolished the anti-cancer effect of combo treatment totally. Mechanistically, combo treatment further increased the expression of CXCL10 through activating TBK1-IRF3 signaling pathway, explaining the increased infiltration of T cells. Employing anti- CXC chemokine receptor 3 (CXCR3) blocking antibody prevented the T cells infiltration and abolished the anti-cancer effect of combo treatment. Meanwhile, combo treatment increased the percentage of M1-like macrophages and raised the ratio of M1/M2 macrophages in TME. By comparing the anti-cancer effect of combo treatment among MC38, CT26 and 4T1 tumors, resident T cells were considered as a prerequisite for the effectiveness of combo treatment. These findings demonstrated that Rh2 potentiated the anti-cancer effect of PD-L1 blockade via promoting the T cells infiltration and activation, which shed a new light on the combination strategy to enhance anti-PD-L1 immunotherapy by using natural product Rh2.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Imunoterapia , Microambiente Tumoral , Quimiocina CXCL10/farmacologia
3.
Acta Pharm Sin B ; 13(4): 1467-1487, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139405

RESUMO

Described as a "don't eat me" signal, CD47 becomes a vital immune checkpoint in cancer. Its interaction with signal regulatory protein alpha (SIRPα) prevents macrophage phagocytosis. In recent years, a growing body of evidences have unveiled that CD47-based combination therapy exhibits a superior anti-cancer effect. Latest clinical trials about CD47 have adopted the regimen of collaborating with other therapies or developing CD47-directed bispecific antibodies, indicating the combination strategy as a general trend of the future. In this review, clinical and preclinical cases about the current combination strategies targeting CD47 are collected, their underlying mechanisms of action are discussed, and ideas from future perspectives are shared.

4.
MedComm (2020) ; 3(3): e152, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35978854

RESUMO

Lung cancer is the leading cause of cancer death worldwide, of which lung adenocarcinoma (LUAD) is the most common subtype. Metastasis is the major cause of poor prognosis and mortality for lung cancer patients, which urgently needs great efforts to be further explored. Herein, glutathione peroxidase 8 (GPX8) was identified as a novel potential pro-metastatic gene in LUAD metastatic mice models from GEO database. GPX8 was highly expressed in tumor tissues, predicting poor prognosis in LUAD patients. Knockdown of GPX8 inhibited LUAD metastasis in vitro and in vivo, while it did not obviously affect tumor growth. Knockdown of GPX8 decreased the levels of p-FAK and p-Paxillin and disturbed the distribution of focal adhesion. Furthermore, GPX8 was overexpressed in cancer-associated fibroblast (CAF) and associated with CAF infiltration in tumor microenvironment of lung cancer. GPX8 silence on fibroblasts suppressed lung cancer cell migration in the coculture system. BRD2 and RRD4 were the potential transcriptionally regulators for GPX8. Bromodomain extra-terminal inhibitor JQ1 downregulated GPX8 expression and suppressed lung cancer cell migration. Our findings indicate that highly expressed GPX8 in lung cancer cells and fibroblasts functions as a pro-metastatic factor in lung cancer. JQ1 is identified as a potential inhibitor against GPX8-mediated lung cancer metastasis.

5.
Acta Pharm Sin B ; 12(3): 1240-1253, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530150

RESUMO

The mammalian target of rapamycin (mTOR) pathway is abnormally activated in lung cancer. However, the anti-lung cancer effect of mTOR inhibitors as monotherapy is modest. Here, we identified that ginsenoside Rh2, an active component of Panax ginseng C. A. Mey., enhanced the anti-cancer effect of the mTOR inhibitor everolimus both in vitro and in vivo. Moreover, ginsenoside Rh2 alleviated the hepatic fat accumulation caused by everolimus in xenograft nude mice models. The combination of everolimus and ginsenoside Rh2 (labeled Eve-Rh2) induced caspase-independent cell death and cytoplasmic vacuolation in lung cancer cells, indicating that Eve-Rh2 prevented tumor progression by triggering paraptosis. Eve-Rh2 up-regulated the expression of c-MYC in cancer cells as well as tumor tissues. The increased c-MYC mediated the accumulation of tribbles homolog 3 (TRIB3)/P62+ aggresomes and consequently triggered paraptosis, bypassing the classical c-MYC/MAX pathway. Our study offers a potential effective and safe strategy for the treatment of lung cancer. Moreover, we have identified a new mechanism of TRIB3/P62+ aggresomes-triggered paraptosis and revealed a unique function of c-MYC.

6.
Biochem Pharmacol ; 197: 114940, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120895

RESUMO

Programmed death ligand-1 (PD-L1) and indoleamine 2, 3-dioxygenase 1 (IDO1) are immune checkpoints induced by interferon-γ (IFN-γ) in the tumor microenvironment, leading to immune escape of tumors. Myricetin (MY) is a flavonoid distributed in many edible and medicinal plants. In this study, MY was identified to inhibit IFN-γ-induced PD-L1 expression in human lung cancer cells. It also reduced the expression of IDO1 and the production of kynurenine which is the product catalyzed by IDO1, while didn't show obvious effect on the expression of major histocompatibility complex-I (MHC-I), a crucial molecule for antigen presentation. In addition, the function of T cells was evaluated using a co-culture system consist of lung cancer cells and the Jurkat-PD-1 T cell line overexpressing PD-1. MY restored the survival, proliferation, CD69 expression and interleukin-2 (IL-2) secretion of Jurkat-PD-1 T cells suppressed by IFN-γ-treated lung cancer cells. Mechanistically, IFN-γ up-regulated PD-L1 and IDO1 at the transcriptional level through the JAK-STAT-IRF1 axis, which was targeted and inhibited by MY. Together, our research revealed a new mechanism of MY mediated anti-tumor activity and highlighted the potential implications of MY in tumor immunotherapy.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Flavonoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Interferon gama/farmacologia , Neoplasias Pulmonares/metabolismo , Células A549 , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HCT116 , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Células Jurkat , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
7.
Curr Cancer Drug Targets ; 22(2): 142-152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034596

RESUMO

BACKGROUND: Shenling Baizhu Powder (SBP), a famous Traditional Chinese Medicine (TCM) formulation, has been widely used in the adjuvant treatment of cancers, including breast cancer. This study aims to identify potential new targets for breast cancer treatment based on the network pharmacology of SBP. METHODS: By analyzing the relationship between herbs and target proteins, potential targets of multiple herbs in SBP were identified by network pharmacology analysis. Besides, by comparing the data of breast cancer tissue with normal tissue, upregulated genes in two breast cancer expression profiles were found. Thereafter, the expression level and prognosis of activator of heat shock protein 90 (HSP90) ATPase activity 1 (AHSA1) were further analyzed in breast cancer by bioinformatics analysis, and the network module of AHSA1 binding protein was constructed. Furthermore, the effect of knocking down AHSA1 on the proliferation, migration, and invasion of breast cancer cells was verified by MTT, clone formation assay, and transwell assay. RESULTS: Vascular endothelial growth factor A (VEGFA), intercellular adhesion molecule 1 (ICAM1), chemokine (C-X-C motif) ligand 8 (CXCL8), AHSA1, and serpin family E member 1 (SERPINE1) were associated with multiple herbs in SBP. AHSA1 was remarkably upregulated in breast cancer tissues and positively correlated with poor overall survival and disease metastasis- free survival. Furthermore, knockdown of AHSA1 significantly inhibited the migration and invasion in MCF-7 and MDA-MB-231 breast cancer cells but had no obvious effect on proliferation. In addition, among the proteins that bind to AHSAl, the network composed of proteasome, chaperonin, and heat shock proteins is closely connected, and these proteins are associated with poor prognosis in a variety of cancers. CONCLUSION: AHSA1 is positively correlated with breast cancer progression and might act as a novel therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama , Adenosina Trifosfatases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Chaperonas Moleculares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Transl Oncol ; 14(9): 101162, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34171557

RESUMO

The anti-phagocytosis signal, CD47, prevents phagocytosis when it interacts with signal-regulatory protein alpha (SIRPα) on macrophages. Given the vital role of CD47 in immune response, further investigation on the regulation of CD47 in tumor microenvironment is needed. Herein, we identified that interferon-gamma (IFN-γ), one of the most important cytokines in the immune and inflammatory response, up-regulated CD47 expression in cancer cells and this effect could be inhibited by the JAK1/2 inhibitor ruxolitinib, as well as siRNA-mediated silencing of JAK1, STAT1, and IRF1. The IFN-γ-induced surface expression of CD47 contributed to a stronger binding affinity to SIRPα and a decrease in phagocytosis of cancer cells by macrophages. Knockdown of JAK1, STAT1, or IRF1 by siRNA reversed the decreased phagocytosis caused by IFN-γ. Besides, analysis from TCGA revealed that IFNG had a positive correlation with CD47 in various types of cancer, which was supported by the increased surface CD47 expression after IFN-γ treatment in different types of cancer cells. The discovery of IFN-γ-induced up-regulation of CD47 in cancer cells unveils another feedback inhibitory mechanism of IFN-γ, thus providing insights into cancer immunotherapy targeting CD47.

9.
Phytomedicine ; 80: 153394, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130472

RESUMO

BACKGROUND: Programmed death-ligand 1 (PD-L1), which can be induced by interferon-gamma (IFN-γ) in the tumor microenvironment, is a critical immune checkpoint in cancer immunotherapy. Natural products which reduce IFN-γ-induced PD-L1 might be exert immunotherapy effect. Licochalcone A (LCA), a natural compound derived from the root of Glycyrrhiza inflata Batalin. (Fabaceae), was found to interfere IFN-γ-induced PD-L1. PURPOSE: The aim of this study is to further clarify the effect and the mechanism of LCA on inhibiting IFN-γ-induced PD-L1 in lung cancer cells. METHODS: The expression levels of PD-L1 were evaluated by flow cytometry, western blot and qRT-PCR. Click-iT protein synthesis assay and luciferase assay were used to identify the effect of LCA on protein synthesis. Jurkat T cell proliferation and apoptosis in the co-culture system were detected by flow cytometry. Flow cytometry was also applied to evaluate reactive oxygen species (ROS) generation. RESULTS: LCA downregulated IFN-γ-induced PD-L1 protein expression and membrane localization in human lung cancer cells, regardless of inhibiting PD-L1 mRNA level or promoting its protein degradation. LCA decreased apoptosis and proliferative inhibition of Jurkat T cells caused by IFN-γ-induced PD-L1-expressing in A549 cells in the co-culture system. Strikingly, LCA was verified as a protein synthesis inhibitor, which reduced both cap-dependent and -independent translation. LCA inhibited PD-L1 translation, likely due to inhibition of 4EBP1 phosphorylation (Ser 65) and activation of PERK-eIF2α pathway. Furthermore, LCA induced ROS generation in a time-dependent manner in lung cancer cells. N-acetyl-L-cysteine (NAC) not only revered ROS generation triggered by LCA but also restored IFN-γ-induced expression of PD-L1. Both the inhibition of 4EBP1 phosphorylation (Ser 65) and activation of PERK-eIF2α axis triggered by LCA was restored by co-treatment with NAC. CONCLUSION: LCA abrogated IFN-γ-induced PD-L1 expression via ROS generation to abolish the protein translation, indicating that LCA has the potential to be applied in cancer immunotherapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antígeno B7-H1/metabolismo , Chalconas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Antígeno B7-H1/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Células Jurkat , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
10.
Acta Pharmacol Sin ; 42(3): 451-459, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32678313

RESUMO

Osimertinib (AZD9291) has been widely used for the treatment of EGFR mutant non-small cell lung cancer. However, resistance to osimertinib is inevitable. In this study we elucidated the molecular mechanisms of resistance in osimertinib-resistant NCI-H1975/OSIR cells. We showed that NCI-H1975/OSIR cells underwent epithelial-mesenchymal transition (EMT), which conferred sensitivity to the GPX4 inhibitor 1S, 3R-RSL3 to induce ferroptotic cell death. The EMT occurrence resulted from osimertinib-induced upregulation of TGFß2 that activated SMAD2. On the other hand, we revealed that NCI-H1975/OSIR cells were highly dependent on NF-κB pathway for survival, since treatment with the NF-κB pathway inhibitor BAY 11-7082 or genetic silence of p65 caused much greater cell death as compared with the parental NCI-H1975 cells. In NCI-H1975 cells, osimertinib activated NF-κB pathway, evidenced by the increased p65 nuclear translocation, which was abolished by knockdown of TGFß2. In the cancer genome atlas lung adenocarcinoma data, TGFB2 transcript abundance significantly correlated with EMT-associated genes and NF-κB pathway. In addition, coexistence of EMT and activation of NF-κB pathway was observed in several NCI-H1975/OSIR clones. These findings shed new light on distinct roles of TGFß2 in osimertinib-resistant cells and provide new strategies for treatment of this resistant status.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Subunidade p50 de NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Antineoplásicos/farmacologia , Carbolinas/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo
11.
Pharmacol Ther ; 219: 107694, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32980443

RESUMO

Programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has been approved as the standard-of-care for the treatment of non-small cell lung cancer (NSCLC). Yet, the population of patients who benefit from the treatment remains modest, some of whom would get relapsed and progressed eventually. Combination therapy has emerged as an effective way to broaden beneficiaries from PD-1/PD-L1 immunotherapy and overcome or delay the resistance. In this review, we discuss the PD-1/PD-L1 blockade in combination with conventional chemotherapy, targeted therapy or immunotherapy. Meanwhile, we illustrate their underlying mechanisms in regulating the process of the cancer-immunity cycle, providing the rationale for the PD-1/PD-L1 blockade-based combination therapy. The challenges of combination regimens are also addressed.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Receptor de Morte Celular Programada 1
12.
Transl Oncol ; 13(12): 100862, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32920329

RESUMO

CD47 is overexpressed in various types of cancers and it can directly bind with SIRPα, which is mainly located on macrophages. The binding of CD47-SIRPα transmits a "don't eat me" signal, which can prevent cancer cells from immune clearance. Targeting the phagocytosis checkpoint of CD47-SIRPα axis has shown remarkable anticancer effect in preclinical and clinical research, which indicates the potential application of CD47-SIRPα blockade for cancer treatment. In this case, the comprehensive description of the regulation of CD47 in different types of cancer cells has significant implications for furthering our understanding of the role of CD47 in cancer. Based on the current reports, we summarized the regulatory factors, i.e., cytokines, oncogenes, microRNAs as well as enzymes, of CD47 expression in cancer cells. Accordingly, we also proposed several points needing further research, hoping to provide useful insights for the future investigation on the regulation of CD47 in cancers.

13.
Chin J Nat Med ; 18(7): 517-525, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32616192

RESUMO

Nagilactone E (NLE), a natural product with anticancer activities, is isolated from Podocarpus nagi. In this study, we reported that NLE increased programmed death ligand 1 (PD-L1) expressions at both protein and mRNA levels in human lung cancer cells, and enhanced its localization on the cell membrane. Mechanistically, NLE increased the phosphorylation and expression of c-Jun, and promoted the localization of c-Jun in the nucleus, while silencing of c-Jun by small interfering RNA (siRNA) reduced NLE-induced PD-L1. Further study showed that NLE activated the c-Jun N-terminal kinases (JNK), the upstream of c-Jun, and its inhibitor SP600125 reversed the NLE-increased PD-L1. Moreover, NLE-induced PD-L1 increased the binding intensity of PD-1 on the cell surface. In summary, NLE upregulates the expression of PD-L1 in lung cancer cells through the activation of JNK-c-Jun axis, which has the potential to combine with the PD-1/PD-L1 antibody therapies in lung cancer.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Diterpenos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lactonas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Diterpenos/química , Humanos , Lactonas/química , Estrutura Molecular
14.
Food Chem ; 327: 127029, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450486

RESUMO

Platycodonis Radix, the root of Platycodon grandiflorum (Jacq.) A. DC., is a well-known edible herbal medicine. It is a common vegetable used for the preparation of side dish, kimchi, dessert, and tea. Besides, it has been used to treat respiratory disease including cough, excessive phlegm, and sore throat for a long history. In the past decades, the bioactive components and the pharmacological activities of Platycodonis Radix have been widely investigated. Thereinto, platycodins, the oleanane-type triterpenoid saponins were demonstrated to be the main bioactive components in Platycodonis Radix, and more than 70 platycodins have been identified up to date. This paper mainly reviewed the phytochemistry, pharmacological activities (apophlegmatic, anti-tussive, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, immunomodulatory, cardiovascular protective, and hepatoprotective activities, etc.), toxicology and pharmacokinetics of platycodins isolated from Platycodonis Radix, aiming to promote further investigation on therapeutic potential of these platycodins.


Assuntos
Platycodon/química , Saponinas/química , Saponinas/farmacologia , Animais , Humanos , Fitoterapia , Saponinas/farmacocinética , Saponinas/toxicidade
15.
Food Chem Toxicol ; 131: 110537, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31150782

RESUMO

Programmed death ligand-1 (PD-L1) is an important immune checkpoint for cancer immunotherapy in clinic. In this study, we reported that platycodin D, a natural product isolated from an edible and medicinal plant Platycodon grandiflorus (Jacq.) A. DC., down-regulated the protein level of PD-L1 in lung cancer cells. Flow cytometry and immunofluorescence assay showed a weaker surface PD-L1 signal in NCI-H1975 cells after the incubation with platycodin D (10 µM) for 15 min compared to the control group. Jurkat T cells showed enhancive interleukin-2 secretion when co-cultured with platycodin D-treated NCI-H1975 cells, suggesting that platycodin D-induced PD-L1 reduction increases the activation of Jurkat T cells. An augmentation of PD-L1 protein was detected in the cell culture medium from platycodin D treatment group. Chlorpromazine (60 µM) almost abolished the platycodin D-mediated PD-L1 extracellular release and restored the membrane PD-L1. Finally, hemolysis assay exhibited that platycodin D-triggered PD-L1 extracellular release was independent of the hemolytic mechanism. Taken together, our study demonstrates that platycodin D reduces the protein level of PD-L1 in lung cancer cells via triggering its release into the cell culture medium, which sheds new light for the application of natural products in cancer immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Linhagem Celular Tumoral , Clorpromazina/farmacologia , Humanos , Interleucina-2/metabolismo , Células Jurkat , Transporte Proteico/efeitos dos fármacos
16.
Phytomedicine ; 52: 32-39, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30599910

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related death around the world. Epithelial-mesenchymal transition (EMT) has been documented to increase motility and invasiveness of cancer cells, which promotes cancer metastasis. PURPOSE: This study aims to investigate the inhibitory effects and mechanisms of the dinorditerpenoids and norditerpenoids isolated from the seeds of Podocarpus nagi against transforming growth factor (TGF)-ß1-induced EMT. METHODS: A series of dinorditerpenoids and norditerpenoids were isolated from the seeds of P. nagi. Western blot and quantitative real-time PCR assays were performed to determine the expression levels of relative proteins and mRNA, along with immunofluorescence, Smad-binding element (SBE)-luciferase and chromatin immunoprecipitation (ChIP) assays for the mechanism study. Transwell assays were conducted to determine the effect of the compounds on cell migration and invasion. RESULTS: Nagilactone E (NLE) showed the superior inhibitory effect against TGF-ß1-induced EMT. NLE treatment dramatically inhibited TGF-ß1-induced expression of EMT markers in A549 cells. Mechanism study indicated that NLE markedly suppressed TGF-ß1-induced Smad2 and Smad3 activation and nuclear translocation. SBE-luciferase and ChIP assays showed that NLE inhibited the combining of Smad3 to SBE in the promoters of the cell signaling factors. NLE co-treatment attenuated TGF-ß1-induced up-regulation of the protein and mRNA levels of TGF-ß receptor TßRI. Furthermore, NLE inhibited TGF-ß1-stimulated cell migration and invasion, as well as up-regulation of the key signaling proteins related with migration and invasion. CONCLUSION: NLE inhibited TGF-ß/Smad signaling pathway, thereafter suppressed TGF-ß1-induced EMT, migration and invasion in NSCLC A549 cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Diterpenos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Fator de Crescimento Transformador beta1/farmacologia , Células A549 , Movimento Celular/efeitos dos fármacos , Gleiquênias/química , Humanos , Invasividade Neoplásica , Sementes/química , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
17.
Chin Med ; 13: 35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997684

RESUMO

Cancer is still presenting a serious threat to human health worldwide. The understanding of the complex biology of cancer and the development of oncotherapy have led to increasing treatment approaches such as targeted therapy and immunotherapy. Chinese medicinal herbs have attracted considerable attention due to their potential anticancer effects. Some natural products or formulae from Chinese medicinal herbs with directly or indirectly anticancer effects have been reported. In this article, we summarized the current progression on development of anticancer drugs from Chinese medicinal herbs, toward providing ideas for further development and application of Chinese medicinal herbs in cancer therapy.

18.
Acta Pharmacol Sin ; 38(11): 1512-1520, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28880013

RESUMO

Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that has been approved for the treatment of EGFR-mutated non-small cell lung cancer (NSCLC). In NSCLC patients, an EGFR mutation is likely to be correlated with high levels of expression of programmed death ligand-1 (PD-L1). Here, we showed that osimertinib decreased PD-L1 expression in human EGFR mutant NSCLC cells in vitro. Osimertinib (125 nmol/L) markedly suppressed PD-L1 mRNA expression in both NCI-H1975 and HCC827 cells. Pretreatment with the N-linked glycosylation inhibitor tunicamycin, osimertinib clearly decreased the production of new PD-L1 protein probably due to a reduction in mRNA. After blocking transcription and translation processes with actinomycin D and cycloheximide, respectively, osimertinib continued to reduce the expression of PD-L1, demonstrating that osimertinib might degrade PD-L1 at the post-translational level, which was confirmed by a cycloheximide chase assay, revealing that osimertinib (125 nmol/L) decreased the half-life of PD-L1 from approximately 17.8 h and 13.8 h to 8.6 h and 4.6 h, respectively, in NCI-H1975 and HCC827 cells. Pretreatment with the proteasome inhibitors (MG-132 or bortezomib) blocked the osimertinib-induced degradation of PD-L1, but an inhibitor of autophagy (chloroquine) did not. In addition, inhibition of GSK3ß by LiCl prevented osimertinib-induced PD-L1 degradation. The results demonstrate that osimertinib reduces PD-L1 mRNA expression and induces its protein degradation, suggesting that osimertinib may reactivate the immune activity of T cells in the tumor microenvironment in EGFR-mutated NSCLC patients.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas , Compostos de Anilina , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fosforilação , Complexo de Endopeptidases do Proteassoma , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...